Metamath Proof Explorer


Theorem e23an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e23an.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e23an.2 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜏    )
e23an.3 ( ( 𝜒𝜏 ) → 𝜂 )
Assertion e23an (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e23an.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e23an.2 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜏    )
3 e23an.3 ( ( 𝜒𝜏 ) → 𝜂 )
4 3 ex ( 𝜒 → ( 𝜏𝜂 ) )
5 1 2 4 e23 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜂    )