Metamath Proof Explorer


Theorem e2ebind

Description: Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. e2ebind is derived from e2ebindVD . (Contributed by Alan Sare, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion e2ebind xx=yxyφyφ

Proof

Step Hyp Ref Expression
1 biidd yy=xφφ
2 1 drex1 yy=xyφxφ
3 2 drex2 yy=xyyφyxφ
4 excom yxφxyφ
5 3 4 bitrdi yy=xyyφxyφ
6 nfe1 yyφ
7 6 19.9 yyφyφ
8 5 7 bitr3di yy=xxyφyφ
9 8 aecoms xx=yxyφyφ