Metamath Proof Explorer


Theorem ecase

Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses ecase.1 ¬φχ
ecase.2 ¬ψχ
ecase.3 φψχ
Assertion ecase χ

Proof

Step Hyp Ref Expression
1 ecase.1 ¬φχ
2 ecase.2 ¬ψχ
3 ecase.3 φψχ
4 3 ex φψχ
5 4 1 2 pm2.61nii χ