Metamath Proof Explorer


Theorem ecidsn

Description: An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004)

Ref Expression
Assertion ecidsn AI=A

Proof

Step Hyp Ref Expression
1 df-ec AI=IA
2 imai IA=A
3 1 2 eqtri AI=A