Metamath Proof Explorer


Theorem ectocld

Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ectocl.1 S=B/R
ectocl.2 xR=Aφψ
ectocld.3 χxBφ
Assertion ectocld χASψ

Proof

Step Hyp Ref Expression
1 ectocl.1 S=B/R
2 ectocl.2 xR=Aφψ
3 ectocld.3 χxBφ
4 2 eqcoms A=xRφψ
5 3 4 syl5ibcom χxBA=xRψ
6 5 rexlimdva χxBA=xRψ
7 elqsi AB/RxBA=xR
8 7 1 eleq2s ASxBA=xR
9 6 8 impel χASψ