Metamath Proof Explorer
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ectocl.1 |
|
|
|
ectocl.2 |
|
|
|
ectocl.3 |
|
|
Assertion |
ectocl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ectocl.1 |
|
| 2 |
|
ectocl.2 |
|
| 3 |
|
ectocl.3 |
|
| 4 |
|
tru |
|
| 5 |
3
|
adantl |
|
| 6 |
1 2 5
|
ectocld |
|
| 7 |
4 6
|
mpan |
|