Metamath Proof Explorer


Theorem ee010

Description: e010 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee010.1 φ
ee010.2 ψχ
ee010.3 θ
ee010.4 φχθτ
Assertion ee010 ψτ

Proof

Step Hyp Ref Expression
1 ee010.1 φ
2 ee010.2 ψχ
3 ee010.3 θ
4 ee010.4 φχθτ
5 1 a1i ψφ
6 3 a1i ψθ
7 5 2 6 4 syl3c ψτ