Metamath Proof Explorer


Theorem ee13an

Description: e13an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee13an.1 φψ
ee13an.2 φχθτ
ee13an.3 ψτη
Assertion ee13an φχθη

Proof

Step Hyp Ref Expression
1 ee13an.1 φψ
2 ee13an.2 φχθτ
3 ee13an.3 ψτη
4 3 ex ψτη
5 1 2 4 ee13 φχθη