Metamath Proof Explorer
Description: e13an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
ee13an.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
ee13an.2 |
⊢ ( 𝜑 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) |
|
|
ee13an.3 |
⊢ ( ( 𝜓 ∧ 𝜏 ) → 𝜂 ) |
|
Assertion |
ee13an |
⊢ ( 𝜑 → ( 𝜒 → ( 𝜃 → 𝜂 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ee13an.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
ee13an.2 |
⊢ ( 𝜑 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) |
3 |
|
ee13an.3 |
⊢ ( ( 𝜓 ∧ 𝜏 ) → 𝜂 ) |
4 |
3
|
ex |
⊢ ( 𝜓 → ( 𝜏 → 𝜂 ) ) |
5 |
1 2 4
|
ee13 |
⊢ ( 𝜑 → ( 𝜒 → ( 𝜃 → 𝜂 ) ) ) |