Metamath Proof Explorer


Theorem ee21an

Description: e21an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee21an.1 φψχ
ee21an.2 φθ
ee21an.3 χθτ
Assertion ee21an φψτ

Proof

Step Hyp Ref Expression
1 ee21an.1 φψχ
2 ee21an.2 φθ
3 ee21an.3 χθτ
4 3 ex χθτ
5 1 2 4 syl6ci φψτ