Metamath Proof Explorer


Theorem ee233

Description: Non-virtual deduction form of e233 . (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.

h1:: |- ( ph -> ( ps -> ch ) )
h2:: |- ( ph -> ( ps -> ( th -> ta ) ) )
h3:: |- ( ph -> ( ps -> ( th -> et ) ) )
h4:: |- ( ch -> ( ta -> ( et -> ze ) ) )
5:1,4: |- ( ph -> ( ps -> ( ta -> ( et -> ze ) ) ) )
6:5: |- ( ta -> ( ph -> ( ps -> ( et -> ze ) ) ) )
7:2,6: |- ( ph -> ( ps -> ( th -> ( ph -> ( ps -> ( et -> ze ) ) ) ) ) )
8:7: |- ( ps -> ( th -> ( ph -> ( ps -> ( et -> ze ) ) ) ) )
9:8: |- ( th -> ( ph -> ( ps -> ( et -> ze ) ) ) )
10:9: |- ( ph -> ( ps -> ( th -> ( et -> ze ) ) ) )
11:10: |- ( et -> ( ph -> ( ps -> ( th -> ze ) ) ) )
12:3,11: |- ( ph -> ( ps -> ( th -> ( ph -> ( ps -> ( th -> ze ) ) ) ) ) )
13:12: |- ( ps -> ( th -> ( ph -> ( ps -> ( th -> ze ) ) ) ) )
14:13: |- ( th -> ( ph -> ( ps -> ( th -> ze ) ) ) )
qed:14: |- ( ph -> ( ps -> ( th -> ze ) ) )

Ref Expression
Hypotheses ee233.1 φψχ
ee233.2 φψθτ
ee233.3 φψθη
ee233.4 χτηζ
Assertion ee233 φψθζ

Proof

Step Hyp Ref Expression
1 ee233.1 φψχ
2 ee233.2 φψθτ
3 ee233.3 φψθη
4 ee233.4 χτηζ
5 1 4 syl6 φψτηζ
6 5 com3r τφψηζ
7 2 6 syl8 φψθφψηζ
8 pm2.43cbi φψθφψηζψθφψηζ
9 7 8 mpbi ψθφψηζ
10 pm2.43cbi ψθφψηζθφψηζ
11 9 10 mpbi θφψηζ
12 11 com14 ηφψθζ
13 3 12 syl8 φψθφψθζ
14 pm2.43cbi φψθφψθζψθφψθζ
15 13 14 mpbi ψθφψθζ
16 pm2.43cbi ψθφψθζθφψθζ
17 15 16 mpbi θφψθζ
18 pm2.43cbi θφψθζφψθζ
19 17 18 mpbi φψθζ