Metamath Proof Explorer


Theorem ee30an

Description: Conjunction form of ee30 . (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee30an.1 φψχθ
ee30an.2 τ
ee30an.3 θτη
Assertion ee30an φψχη

Proof

Step Hyp Ref Expression
1 ee30an.1 φψχθ
2 ee30an.2 τ
3 ee30an.3 θτη
4 3 ex θτη
5 1 2 4 ee30 φψχη