Metamath Proof Explorer


Theorem ee333

Description: e333 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee333.1 φψχθ
ee333.2 φψχτ
ee333.3 φψχη
ee333.4 θτηζ
Assertion ee333 φψχζ

Proof

Step Hyp Ref Expression
1 ee333.1 φψχθ
2 ee333.2 φψχτ
3 ee333.3 φψχη
4 ee333.4 θτηζ
5 1 3imp φψχθ
6 2 3imp φψχτ
7 3 3imp φψχη
8 5 6 7 4 syl3c φψχζ
9 8 3exp φψχζ