Metamath Proof Explorer


Theorem ee33an

Description: e33an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee33an.1 φψχθ
ee33an.2 φψχτ
ee33an.3 θτη
Assertion ee33an φψχη

Proof

Step Hyp Ref Expression
1 ee33an.1 φψχθ
2 ee33an.2 φψχτ
3 ee33an.3 θτη
4 3 ex θτη
5 1 2 4 ee33 φψχη