Metamath Proof Explorer


Theorem eel2122old

Description: el2122old without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel2122old.1 φψχ
eel2122old.2 ψθ
eel2122old.3 ψτ
eel2122old.4 χθτη
Assertion eel2122old φψη

Proof

Step Hyp Ref Expression
1 eel2122old.1 φψχ
2 eel2122old.2 ψθ
3 eel2122old.3 ψτ
4 eel2122old.4 χθτη
5 4 3exp χθτη
6 1 5 syl φψθτη
7 2 6 syl5 φψψτη
8 3 7 syl7 φψψψη
9 8 ex φψψψη
10 9 pm2.43d φψψη
11 10 pm2.43d φψη
12 11 imp φψη