Metamath Proof Explorer


Theorem eexinst01

Description: exinst01 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eexinst01.1 xψ
eexinst01.2 φψχ
eexinst01.3 φxφ
eexinst01.4 χxχ
Assertion eexinst01 φχ

Proof

Step Hyp Ref Expression
1 eexinst01.1 xψ
2 eexinst01.2 φψχ
3 eexinst01.3 φxφ
4 eexinst01.4 χxχ
5 3 4 2 exlimdh φxψχ
6 1 5 mpi φχ