Metamath Proof Explorer


Theorem eexinst11

Description: exinst11 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eexinst11.1 φxψ
eexinst11.2 φψχ
eexinst11.3 φxφ
eexinst11.4 χxχ
Assertion eexinst11 φχ

Proof

Step Hyp Ref Expression
1 eexinst11.1 φxψ
2 eexinst11.2 φψχ
3 eexinst11.3 φxφ
4 eexinst11.4 χxχ
5 3 4 2 exlimdh φxψχ
6 1 5 syl5com φφχ
7 6 pm2.43i φχ