Metamath Proof Explorer


Theorem eexinst11

Description: exinst11 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eexinst11.1
|- ( ph -> E. x ps )
eexinst11.2
|- ( ph -> ( ps -> ch ) )
eexinst11.3
|- ( ph -> A. x ph )
eexinst11.4
|- ( ch -> A. x ch )
Assertion eexinst11
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 eexinst11.1
 |-  ( ph -> E. x ps )
2 eexinst11.2
 |-  ( ph -> ( ps -> ch ) )
3 eexinst11.3
 |-  ( ph -> A. x ph )
4 eexinst11.4
 |-  ( ch -> A. x ch )
5 3 4 2 exlimdh
 |-  ( ph -> ( E. x ps -> ch ) )
6 1 5 syl5com
 |-  ( ph -> ( ph -> ch ) )
7 6 pm2.43i
 |-  ( ph -> ch )