Metamath Proof Explorer


Theorem efmndbasf

Description: Elements in the monoid of endofunctions on A are functions from A into itself. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndbas.b B = Base G
Assertion efmndbasf F B F : A A

Proof

Step Hyp Ref Expression
1 efmndbas.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndbas.b B = Base G
3 1 2 elefmndbas2 F B F B F : A A
4 3 ibi F B F : A A