Metamath Proof Explorer


Theorem ehl0

Description: The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023)

Ref Expression
Hypotheses ehl0base.e E=𝔼hil0
ehl0base.0 0˙=0E
Assertion ehl0 BaseE=0˙

Proof

Step Hyp Ref Expression
1 ehl0base.e E=𝔼hil0
2 ehl0base.0 0˙=0E
3 1 ehl0base BaseE=
4 ovex 10V
5 0nn0 00
6 1 ehlval 00E=msup
7 5 6 ax-mp E=msup
8 fz10 10=
9 8 xpeq1i 10×0=×0
10 9 eqcomi ×0=10×0
11 7 10 rrx0 10V0E=×0
12 4 11 ax-mp 0E=×0
13 2 12 eqtri 0˙=×0
14 0xp ×0=
15 13 14 eqtri 0˙=
16 15 eqcomi =0˙
17 16 sneqi =0˙
18 3 17 eqtri BaseE=0˙