| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl0base.e |  |-  E = ( EEhil ` 0 ) | 
						
							| 2 |  | ehl0base.0 |  |-  .0. = ( 0g ` E ) | 
						
							| 3 | 1 | ehl0base |  |-  ( Base ` E ) = { (/) } | 
						
							| 4 |  | ovex |  |-  ( 1 ... 0 ) e. _V | 
						
							| 5 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 6 | 1 | ehlval |  |-  ( 0 e. NN0 -> E = ( RR^ ` ( 1 ... 0 ) ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  E = ( RR^ ` ( 1 ... 0 ) ) | 
						
							| 8 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 9 | 8 | xpeq1i |  |-  ( ( 1 ... 0 ) X. { 0 } ) = ( (/) X. { 0 } ) | 
						
							| 10 | 9 | eqcomi |  |-  ( (/) X. { 0 } ) = ( ( 1 ... 0 ) X. { 0 } ) | 
						
							| 11 | 7 10 | rrx0 |  |-  ( ( 1 ... 0 ) e. _V -> ( 0g ` E ) = ( (/) X. { 0 } ) ) | 
						
							| 12 | 4 11 | ax-mp |  |-  ( 0g ` E ) = ( (/) X. { 0 } ) | 
						
							| 13 | 2 12 | eqtri |  |-  .0. = ( (/) X. { 0 } ) | 
						
							| 14 |  | 0xp |  |-  ( (/) X. { 0 } ) = (/) | 
						
							| 15 | 13 14 | eqtri |  |-  .0. = (/) | 
						
							| 16 | 15 | eqcomi |  |-  (/) = .0. | 
						
							| 17 | 16 | sneqi |  |-  { (/) } = { .0. } | 
						
							| 18 | 3 17 | eqtri |  |-  ( Base ` E ) = { .0. } |