| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehleudis.i |  |-  I = ( 1 ... N ) | 
						
							| 2 |  | ehleudis.e |  |-  E = ( EEhil ` N ) | 
						
							| 3 |  | ehleudis.x |  |-  X = ( RR ^m I ) | 
						
							| 4 |  | ehleudis.d |  |-  D = ( dist ` E ) | 
						
							| 5 | 2 | ehlval |  |-  ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( N e. NN0 -> ( dist ` E ) = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) | 
						
							| 7 | 4 6 | eqtrid |  |-  ( N e. NN0 -> D = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) | 
						
							| 8 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 9 | 1 8 | eqeltri |  |-  I e. Fin | 
						
							| 10 | 1 | eqcomi |  |-  ( 1 ... N ) = I | 
						
							| 11 | 10 | fveq2i |  |-  ( RR^ ` ( 1 ... N ) ) = ( RR^ ` I ) | 
						
							| 12 | 11 | fveq2i |  |-  ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( dist ` ( RR^ ` I ) ) | 
						
							| 13 |  | eqid |  |-  ( RR^ ` I ) = ( RR^ ` I ) | 
						
							| 14 | 13 3 | rrxdsfi |  |-  ( I e. Fin -> ( dist ` ( RR^ ` I ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 15 | 12 14 | eqtrid |  |-  ( I e. Fin -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 16 | 9 15 | mp1i |  |-  ( N e. NN0 -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 17 | 7 16 | eqtrd |  |-  ( N e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |