Step |
Hyp |
Ref |
Expression |
1 |
|
ehleudis.i |
|- I = ( 1 ... N ) |
2 |
|
ehleudis.e |
|- E = ( EEhil ` N ) |
3 |
|
ehleudis.x |
|- X = ( RR ^m I ) |
4 |
|
ehleudis.d |
|- D = ( dist ` E ) |
5 |
2
|
ehlval |
|- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
6 |
5
|
fveq2d |
|- ( N e. NN0 -> ( dist ` E ) = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
7 |
4 6
|
eqtrid |
|- ( N e. NN0 -> D = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
8 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
9 |
1 8
|
eqeltri |
|- I e. Fin |
10 |
1
|
eqcomi |
|- ( 1 ... N ) = I |
11 |
10
|
fveq2i |
|- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` I ) |
12 |
11
|
fveq2i |
|- ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( dist ` ( RR^ ` I ) ) |
13 |
|
eqid |
|- ( RR^ ` I ) = ( RR^ ` I ) |
14 |
13 3
|
rrxdsfi |
|- ( I e. Fin -> ( dist ` ( RR^ ` I ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
15 |
12 14
|
eqtrid |
|- ( I e. Fin -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
16 |
9 15
|
mp1i |
|- ( N e. NN0 -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
17 |
7 16
|
eqtrd |
|- ( N e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |