| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehleudis.i |
|- I = ( 1 ... N ) |
| 2 |
|
ehleudis.e |
|- E = ( EEhil ` N ) |
| 3 |
|
ehleudis.x |
|- X = ( RR ^m I ) |
| 4 |
|
ehleudis.d |
|- D = ( dist ` E ) |
| 5 |
2
|
ehlval |
|- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
| 6 |
5
|
fveq2d |
|- ( N e. NN0 -> ( dist ` E ) = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 7 |
4 6
|
eqtrid |
|- ( N e. NN0 -> D = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 8 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 9 |
1 8
|
eqeltri |
|- I e. Fin |
| 10 |
1
|
eqcomi |
|- ( 1 ... N ) = I |
| 11 |
10
|
fveq2i |
|- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` I ) |
| 12 |
11
|
fveq2i |
|- ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( dist ` ( RR^ ` I ) ) |
| 13 |
|
eqid |
|- ( RR^ ` I ) = ( RR^ ` I ) |
| 14 |
13 3
|
rrxdsfi |
|- ( I e. Fin -> ( dist ` ( RR^ ` I ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 15 |
12 14
|
eqtrid |
|- ( I e. Fin -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 16 |
9 15
|
mp1i |
|- ( N e. NN0 -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 17 |
7 16
|
eqtrd |
|- ( N e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |