| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxdsfi.h |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | rrxdsfi.b |  |-  B = ( RR ^m I ) | 
						
							| 3 |  | id |  |-  ( I e. Fin -> I e. Fin ) | 
						
							| 4 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 5 | 3 1 4 | rrxbasefi |  |-  ( I e. Fin -> ( Base ` H ) = ( RR ^m I ) ) | 
						
							| 6 | 2 5 | eqtr4id |  |-  ( I e. Fin -> B = ( Base ` H ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( I e. Fin /\ f e. B ) -> B = ( Base ` H ) ) | 
						
							| 8 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 9 | 8 | oveq1i |  |-  ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( ( CCfld |`s RR ) gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> I e. Fin ) | 
						
							| 11 |  | simpr |  |-  ( ( I e. Fin /\ f e. B ) -> f e. B ) | 
						
							| 12 | 11 2 | eleqtrdi |  |-  ( ( I e. Fin /\ f e. B ) -> f e. ( RR ^m I ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> f e. ( RR ^m I ) ) | 
						
							| 14 |  | elmapi |  |-  ( f e. ( RR ^m I ) -> f : I --> RR ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> f : I --> RR ) | 
						
							| 16 | 15 | ffvelcdmda |  |-  ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( f ` k ) e. RR ) | 
						
							| 17 |  | simpr |  |-  ( ( I e. Fin /\ g e. B ) -> g e. B ) | 
						
							| 18 | 17 2 | eleqtrdi |  |-  ( ( I e. Fin /\ g e. B ) -> g e. ( RR ^m I ) ) | 
						
							| 19 | 18 | 3adant2 |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> g e. ( RR ^m I ) ) | 
						
							| 20 |  | elmapi |  |-  ( g e. ( RR ^m I ) -> g : I --> RR ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> g : I --> RR ) | 
						
							| 22 | 21 | ffvelcdmda |  |-  ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( g ` k ) e. RR ) | 
						
							| 23 | 16 22 | resubcld |  |-  ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( ( f ` k ) - ( g ` k ) ) e. RR ) | 
						
							| 24 | 23 | resqcld |  |-  ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) e. RR ) | 
						
							| 25 | 10 24 | regsumfsum |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> ( ( CCfld |`s RR ) gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) | 
						
							| 26 | 9 25 | eqtr2id |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ( I e. Fin /\ f e. B /\ g e. B ) -> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) | 
						
							| 28 | 27 | 3expb |  |-  ( ( I e. Fin /\ ( f e. B /\ g e. B ) ) -> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) | 
						
							| 29 | 6 7 28 | mpoeq123dva |  |-  ( I e. Fin -> ( f e. B , g e. B |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. ( Base ` H ) , g e. ( Base ` H ) |-> ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) ) | 
						
							| 30 | 1 4 | rrxds |  |-  ( I e. Fin -> ( f e. ( Base ` H ) , g e. ( Base ` H ) |-> ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) = ( dist ` H ) ) | 
						
							| 31 | 29 30 | eqtr2d |  |-  ( I e. Fin -> ( dist ` H ) = ( f e. B , g e. B |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |