| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxval.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | rrxbase.b |  |-  B = ( Base ` H ) | 
						
							| 3 | 1 | rrxval |  |-  ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( I e. V -> ( dist ` H ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 5 |  | resrng |  |-  RRfld e. *Ring | 
						
							| 6 |  | srngring |  |-  ( RRfld e. *Ring -> RRfld e. Ring ) | 
						
							| 7 | 5 6 | ax-mp |  |-  RRfld e. Ring | 
						
							| 8 |  | eqid |  |-  ( RRfld freeLMod I ) = ( RRfld freeLMod I ) | 
						
							| 9 | 8 | frlmlmod |  |-  ( ( RRfld e. Ring /\ I e. V ) -> ( RRfld freeLMod I ) e. LMod ) | 
						
							| 10 | 7 9 | mpan |  |-  ( I e. V -> ( RRfld freeLMod I ) e. LMod ) | 
						
							| 11 |  | lmodgrp |  |-  ( ( RRfld freeLMod I ) e. LMod -> ( RRfld freeLMod I ) e. Grp ) | 
						
							| 12 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) | 
						
							| 13 |  | eqid |  |-  ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 14 |  | eqid |  |-  ( -g ` ( RRfld freeLMod I ) ) = ( -g ` ( RRfld freeLMod I ) ) | 
						
							| 15 | 12 13 14 | tcphds |  |-  ( ( RRfld freeLMod I ) e. Grp -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 16 | 10 11 15 | 3syl |  |-  ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) | 
						
							| 18 | 17 14 | grpsubf |  |-  ( ( RRfld freeLMod I ) e. Grp -> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 19 | 10 11 18 | 3syl |  |-  ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 20 | 1 2 | rrxbase |  |-  ( I e. V -> B = { h e. ( RR ^m I ) | h finSupp 0 } ) | 
						
							| 21 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 22 |  | re0g |  |-  0 = ( 0g ` RRfld ) | 
						
							| 23 |  | eqid |  |-  { h e. ( RR ^m I ) | h finSupp 0 } = { h e. ( RR ^m I ) | h finSupp 0 } | 
						
							| 24 | 8 21 22 23 | frlmbas |  |-  ( ( RRfld e. Ring /\ I e. V ) -> { h e. ( RR ^m I ) | h finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 25 | 7 24 | mpan |  |-  ( I e. V -> { h e. ( RR ^m I ) | h finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 26 | 20 25 | eqtrd |  |-  ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 27 | 26 | sqxpeqd |  |-  ( I e. V -> ( B X. B ) = ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 28 | 27 26 | feq23d |  |-  ( I e. V -> ( ( -g ` ( RRfld freeLMod I ) ) : ( B X. B ) --> B <-> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 29 | 19 28 | mpbird |  |-  ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) : ( B X. B ) --> B ) | 
						
							| 30 | 29 | fovcdmda |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) e. B ) | 
						
							| 31 | 29 | ffnd |  |-  ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) Fn ( B X. B ) ) | 
						
							| 32 |  | fnov |  |-  ( ( -g ` ( RRfld freeLMod I ) ) Fn ( B X. B ) <-> ( -g ` ( RRfld freeLMod I ) ) = ( f e. B , g e. B |-> ( f ( -g ` ( RRfld freeLMod I ) ) g ) ) ) | 
						
							| 33 | 31 32 | sylib |  |-  ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) = ( f e. B , g e. B |-> ( f ( -g ` ( RRfld freeLMod I ) ) g ) ) ) | 
						
							| 34 | 1 2 | rrxnm |  |-  ( I e. V -> ( h e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) ) = ( norm ` H ) ) | 
						
							| 35 | 3 | fveq2d |  |-  ( I e. V -> ( norm ` H ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 36 | 34 35 | eqtr2d |  |-  ( I e. V -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( h e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) ) ) | 
						
							| 37 |  | fveq1 |  |-  ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( h ` x ) = ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( ( h ` x ) ^ 2 ) = ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) | 
						
							| 39 | 38 | mpteq2dv |  |-  ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( x e. I |-> ( ( h ` x ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) = ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) | 
						
							| 42 | 30 33 36 41 | fmpoco |  |-  ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) ) | 
						
							| 43 |  | simp1 |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> I e. V ) | 
						
							| 44 |  | simprl |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> f e. B ) | 
						
							| 45 | 26 | adantr |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> B = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 46 | 44 45 | eleqtrd |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 47 | 46 | 3impb |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 48 | 8 21 17 | frlmbasmap |  |-  ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f e. ( RR ^m I ) ) | 
						
							| 49 | 43 47 48 | syl2anc |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> f e. ( RR ^m I ) ) | 
						
							| 50 |  | elmapi |  |-  ( f e. ( RR ^m I ) -> f : I --> RR ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> f : I --> RR ) | 
						
							| 52 | 51 | ffnd |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> f Fn I ) | 
						
							| 53 |  | simprr |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> g e. B ) | 
						
							| 54 | 53 45 | eleqtrd |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> g e. ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 55 | 54 | 3impb |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> g e. ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 56 | 8 21 17 | frlmbasmap |  |-  ( ( I e. V /\ g e. ( Base ` ( RRfld freeLMod I ) ) ) -> g e. ( RR ^m I ) ) | 
						
							| 57 | 43 55 56 | syl2anc |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> g e. ( RR ^m I ) ) | 
						
							| 58 |  | elmapi |  |-  ( g e. ( RR ^m I ) -> g : I --> RR ) | 
						
							| 59 | 57 58 | syl |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> g : I --> RR ) | 
						
							| 60 | 59 | ffnd |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> g Fn I ) | 
						
							| 61 |  | inidm |  |-  ( I i^i I ) = I | 
						
							| 62 |  | eqidd |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( f ` x ) = ( f ` x ) ) | 
						
							| 63 |  | eqidd |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( g ` x ) = ( g ` x ) ) | 
						
							| 64 | 52 60 43 43 61 62 63 | offval |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> ( f oF ( -g ` RRfld ) g ) = ( x e. I |-> ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) ) | 
						
							| 65 | 7 | a1i |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> RRfld e. Ring ) | 
						
							| 66 |  | simpl |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> I e. V ) | 
						
							| 67 |  | eqid |  |-  ( -g ` RRfld ) = ( -g ` RRfld ) | 
						
							| 68 | 8 17 65 66 46 54 67 14 | frlmsubgval |  |-  ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( f oF ( -g ` RRfld ) g ) ) | 
						
							| 69 | 68 | 3impb |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( f oF ( -g ` RRfld ) g ) ) | 
						
							| 70 | 51 | ffvelcdmda |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( f ` x ) e. RR ) | 
						
							| 71 | 59 | ffvelcdmda |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( g ` x ) e. RR ) | 
						
							| 72 | 67 | resubgval |  |-  ( ( ( f ` x ) e. RR /\ ( g ` x ) e. RR ) -> ( ( f ` x ) - ( g ` x ) ) = ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) | 
						
							| 73 | 70 71 72 | syl2anc |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) = ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) | 
						
							| 74 | 73 | mpteq2dva |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> ( x e. I |-> ( ( f ` x ) - ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) ) | 
						
							| 75 | 64 69 74 | 3eqtr4d |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( x e. I |-> ( ( f ` x ) - ( g ` x ) ) ) ) | 
						
							| 76 | 70 71 | resubcld |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) e. RR ) | 
						
							| 77 | 75 76 | fvmpt2d |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) = ( ( f ` x ) - ( g ` x ) ) ) | 
						
							| 78 | 77 | oveq1d |  |-  ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) = ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) | 
						
							| 79 | 78 | mpteq2dva |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) | 
						
							| 80 | 79 | oveq2d |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) = ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( I e. V /\ f e. B /\ g e. B ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) | 
						
							| 82 | 81 | mpoeq3dva |  |-  ( I e. V -> ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) | 
						
							| 83 | 42 82 | eqtrd |  |-  ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) | 
						
							| 84 | 4 16 83 | 3eqtr2rd |  |-  ( I e. V -> ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` H ) ) |