Metamath Proof Explorer


Theorem mpteq2dv

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis mpteq2dv.1
|- ( ph -> B = C )
Assertion mpteq2dv
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )

Proof

Step Hyp Ref Expression
1 mpteq2dv.1
 |-  ( ph -> B = C )
2 1 adantr
 |-  ( ( ph /\ x e. A ) -> B = C )
3 2 mpteq2dva
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )