| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 2 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 3 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 6 |  | eqid |  |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) | 
						
							| 7 |  | eqid |  |-  ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | islmod |  |-  ( W e. LMod <-> ( W e. Grp /\ ( Scalar ` W ) e. Ring /\ A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) | 
						
							| 10 | 9 | simp1bi |  |-  ( W e. LMod -> W e. Grp ) |