Metamath Proof Explorer


Theorem lmodgrp

Description: A left module is a group. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)

Ref Expression
Assertion lmodgrp WLModWGrp

Proof

Step Hyp Ref Expression
1 eqid BaseW=BaseW
2 eqid +W=+W
3 eqid W=W
4 eqid ScalarW=ScalarW
5 eqid BaseScalarW=BaseScalarW
6 eqid +ScalarW=+ScalarW
7 eqid ScalarW=ScalarW
8 eqid 1ScalarW=1ScalarW
9 1 2 3 4 5 6 7 8 islmod WLModWGrpScalarWRingqBaseScalarWrBaseScalarWxBaseWwBaseWrWwBaseWrWw+Wx=rWw+WrWxq+ScalarWrWw=qWw+WrWwqScalarWrWw=qWrWw1ScalarWWw=w
10 9 simp1bi WLModWGrp