Metamath Proof Explorer
Table of Contents - 10.3. Rings
- Multiplicative Group
- cmgp
- df-mgp
- fnmgp
- mgpval
- mgpplusg
- mgplemOLD
- mgpbas
- mgpbasOLD
- mgpsca
- mgpscaOLD
- mgptset
- mgptsetOLD
- mgptopn
- mgpds
- mgpdsOLD
- mgpress
- mgpressOLD
- prdsmgp
- Non-unital rings ("rngs")
- crng
- df-rng
- isrng
- rngabl
- rngmgp
- rngmgpf
- rnggrp
- rngass
- rngdi
- rngdir
- rngacl
- rng0cl
- rngcl
- rnglz
- rngrz
- rngmneg1
- rngmneg2
- rngm2neg
- rngansg
- rngsubdi
- rngsubdir
- isrngd
- rngpropd
- prdsmulrngcl
- prdsrngd
- imasrng
- imasrngf1
- xpsrngd
- qusrng
- Ring unity (multiplicative identity)
- cur
- df-ur
- ringidval
- dfur2
- ringurd
- Semirings
- csrg
- df-srg
- issrg
- srgcmn
- srgmnd
- srgmgp
- srgdilem
- srgcl
- srgass
- srgideu
- srgfcl
- srgdi
- srgdir
- srgidcl
- srg0cl
- srgidmlem
- srglidm
- srgridm
- issrgid
- srgacl
- srgcom
- srgrz
- srglz
- srgisid
- o2timesd
- rglcom4d
- srgo2times
- srgcom4lem
- srgcom4
- srg1zr
- srgen1zr
- srgmulgass
- srgpcomp
- srgpcompp
- srgpcomppsc
- srglmhm
- srgrmhm
- srgsummulcr
- sgsummulcl
- srg1expzeq1
- The binomial theorem for semirings
- Unital rings
- crg
- ccrg
- df-ring
- df-cring
- isring
- ringgrp
- ringmgp
- iscrng
- crngmgp
- ringgrpd
- ringmnd
- ringmgm
- crngring
- crngringd
- crnggrpd
- mgpf
- ringdilem
- ringcl
- crngcom
- iscrng2
- ringass
- ringideu
- crngcomd
- crngbascntr
- ringassd
- crng12d
- ringcld
- ringdi
- ringdir
- ringidcl
- ring0cl
- ringidmlem
- ringlidm
- ringridm
- isringid
- ringlidmd
- ringridmd
- ringid
- ringo2times
- ringadd2
- ringidss
- ringacl
- ringcomlem
- ringcom
- ringabl
- ringcmn
- ringabld
- ringcmnd
- ringrng
- ringssrng
- isringrng
- ringpropd
- crngpropd
- ringprop
- isringd
- iscrngd
- ringlz
- ringrz
- ringlzd
- ringrzd
- ringsrg
- ring1eq0
- ring1ne0
- ringinvnz1ne0
- ringinvnzdiv
- ringnegl
- ringnegr
- ringmneg1
- ringmneg2
- ringm2neg
- ringsubdi
- ringsubdir
- mulgass2
- ring1
- ringn0
- ringlghm
- ringrghm
- gsummulc1OLD
- gsummulc2OLD
- gsummulc1
- gsummulc2
- gsummgp0
- gsumdixp
- prdsmulrcl
- prdsringd
- prdscrngd
- prds1
- pwsring
- pws1
- pwscrng
- pwsmgp
- pwspjmhmmgpd
- pwsexpg
- imasring
- imasringf1
- xpsringd
- xpsring1d
- qusring2
- crngbinom
- Opposite ring
- coppr
- df-oppr
- opprval
- opprmulfval
- opprmul
- crngoppr
- opprlem
- opprlemOLD
- opprbas
- opprbasOLD
- oppradd
- oppraddOLD
- opprrng
- opprrngb
- opprring
- opprringb
- oppr0
- oppr1
- opprneg
- opprsubg
- mulgass3
- Divisibility
- cdsr
- cui
- cir
- df-dvdsr
- df-unit
- df-irred
- reldvdsr
- dvdsrval
- dvdsr
- dvdsr2
- dvdsrmul
- dvdsrcl
- dvdsrcl2
- dvdsrid
- dvdsrtr
- dvdsrmul1
- dvdsrneg
- dvdsr01
- dvdsr02
- isunit
- 1unit
- unitcl
- unitss
- opprunit
- crngunit
- dvdsunit
- unitmulcl
- unitmulclb
- unitgrpbas
- unitgrp
- unitabl
- unitgrpid
- unitsubm
- cinvr
- df-invr
- invrfval
- unitinvcl
- unitinvinv
- ringinvcl
- unitlinv
- unitrinv
- 1rinv
- 0unit
- unitnegcl
- ringunitnzdiv
- ring1nzdiv
- cdvr
- df-dvr
- dvrfval
- dvrval
- dvrcl
- unitdvcl
- dvrid
- dvr1
- dvrass
- dvrcan1
- dvrcan3
- dvreq1
- dvrdir
- rdivmuldivd
- ringinvdv
- rngidpropd
- dvdsrpropd
- unitpropd
- invrpropd
- isirred
- isnirred
- isirred2
- opprirred
- irredn0
- irredcl
- irrednu
- irredn1
- irredrmul
- irredlmul
- irredmul
- irredneg
- irrednegb
- Ring primes
- crpm
- df-rprm
- Homomorphisms of non-unital rings
- crnghm
- crngim
- df-rnghm
- df-rngim
- rnghmrcl
- rnghmfn
- rnghmval
- isrnghm
- isrnghmmul
- rnghmmgmhm
- rnghmval2
- isrngim
- rngimrcl
- rnghmghm
- rnghmf
- rnghmmul
- isrnghm2d
- isrnghmd
- rnghmf1o
- isrngim2
- rngimf1o
- rngimrnghm
- rngimcnv
- rnghmco
- idrnghm
- c0mgm
- c0mhm
- c0ghm
- c0snmgmhm
- c0snmhm
- c0snghm
- rngisomfv1
- rngisom1
- rngisomring
- rngisomring1
- Ring homomorphisms
- crh
- crs
- cric
- df-rhm
- df-rim
- dfrhm2
- df-ric
- rhmrcl1
- rhmrcl2
- isrhm
- rhmmhm
- rhmisrnghm
- isrim0OLD
- rimrcl
- isrim0
- rhmghm
- rhmf
- rhmmul
- isrhm2d
- isrhmd
- rhm1
- idrhm
- rhmf1o
- isrim
- isrimOLD
- rimf1o
- rimrhmOLD
- rimrhm
- rimgim
- rimisrngim
- rhmfn
- rhmval
- rhmco
- pwsco1rhm
- pwsco2rhm
- brric
- brrici
- brric2
- ricgic
- rhmdvdsr
- rhmopp
- elrhmunit
- rhmunitinv
- Nonzero rings and zero rings
- cnzr
- df-nzr
- isnzr
- nzrnz
- nzrring
- nzrringOLD
- isnzr2
- isnzr2hash
- opprnzr
- ringelnzr
- nzrunit
- 0ringnnzr
- 0ring
- 0ringdif
- 0ringbas
- 0ring01eq
- 01eq0ring
- 01eq0ringOLD
- 0ring01eqbi
- 0ring1eq0
- c0rhm
- c0rnghm
- zrrnghm
- nrhmzr
- Local rings
- clring
- df-lring
- islring
- lringnzr
- lringring
- lringnz
- lringuplu
- Subrings
- Subrings of non-unital rings
- Subrings of unital rings
- Categories of rings
- The category of non-unital rings
- The category of (unital) rings
- Subcategories of the category of rings