Metamath Proof Explorer


Theorem expghm

Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses expghm.m M=mulGrpfld
expghm.u U=M𝑠0
Assertion expghm AA0xAxringGrpHomU

Proof

Step Hyp Ref Expression
1 expghm.m M=mulGrpfld
2 expghm.u U=M𝑠0
3 expclzlem AA0xAx0
4 3 3expa AA0xAx0
5 4 fmpttd AA0xAx:0
6 expaddz AA0yzAy+z=AyAz
7 zaddcl yzy+z
8 7 adantl AA0yzy+z
9 oveq2 x=y+zAx=Ay+z
10 eqid xAx=xAx
11 ovex Ay+zV
12 9 10 11 fvmpt y+zxAxy+z=Ay+z
13 8 12 syl AA0yzxAxy+z=Ay+z
14 oveq2 x=yAx=Ay
15 ovex AyV
16 14 10 15 fvmpt yxAxy=Ay
17 oveq2 x=zAx=Az
18 ovex AzV
19 17 10 18 fvmpt zxAxz=Az
20 16 19 oveqan12d yzxAxyxAxz=AyAz
21 20 adantl AA0yzxAxyxAxz=AyAz
22 6 13 21 3eqtr4d AA0yzxAxy+z=xAxyxAxz
23 22 ralrimivva AA0yzxAxy+z=xAxyxAxz
24 zringgrp ringGrp
25 cnring fldRing
26 cnfldbas =Basefld
27 cnfld0 0=0fld
28 cndrng fldDivRing
29 26 27 28 drngui 0=Unitfld
30 1 oveq1i M𝑠0=mulGrpfld𝑠0
31 2 30 eqtri U=mulGrpfld𝑠0
32 29 31 unitgrp fldRingUGrp
33 25 32 ax-mp UGrp
34 24 33 pm3.2i ringGrpUGrp
35 zringbas =Basering
36 difss 0
37 1 26 mgpbas =BaseM
38 2 37 ressbas2 00=BaseU
39 36 38 ax-mp 0=BaseU
40 zringplusg +=+ring
41 29 fvexi 0V
42 cnfldmul ×=fld
43 1 42 mgpplusg ×=+M
44 2 43 ressplusg 0V×=+U
45 41 44 ax-mp ×=+U
46 35 39 40 45 isghm xAxringGrpHomUringGrpUGrpxAx:0yzxAxy+z=xAxyxAxz
47 34 46 mpbiran xAxringGrpHomUxAx:0yzxAxy+z=xAxyxAxz
48 5 23 47 sylanbrc AA0xAxringGrpHomU