Metamath Proof Explorer


Theorem expghm

Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses expghm.m M = mulGrp fld
expghm.u U = M 𝑠 0
Assertion expghm A A 0 x A x ring GrpHom U

Proof

Step Hyp Ref Expression
1 expghm.m M = mulGrp fld
2 expghm.u U = M 𝑠 0
3 expclzlem A A 0 x A x 0
4 3 3expa A A 0 x A x 0
5 4 fmpttd A A 0 x A x : 0
6 expaddz A A 0 y z A y + z = A y A z
7 zaddcl y z y + z
8 7 adantl A A 0 y z y + z
9 oveq2 x = y + z A x = A y + z
10 eqid x A x = x A x
11 ovex A y + z V
12 9 10 11 fvmpt y + z x A x y + z = A y + z
13 8 12 syl A A 0 y z x A x y + z = A y + z
14 oveq2 x = y A x = A y
15 ovex A y V
16 14 10 15 fvmpt y x A x y = A y
17 oveq2 x = z A x = A z
18 ovex A z V
19 17 10 18 fvmpt z x A x z = A z
20 16 19 oveqan12d y z x A x y x A x z = A y A z
21 20 adantl A A 0 y z x A x y x A x z = A y A z
22 6 13 21 3eqtr4d A A 0 y z x A x y + z = x A x y x A x z
23 22 ralrimivva A A 0 y z x A x y + z = x A x y x A x z
24 zringgrp ring Grp
25 cnring fld Ring
26 cnfldbas = Base fld
27 cnfld0 0 = 0 fld
28 cndrng fld DivRing
29 26 27 28 drngui 0 = Unit fld
30 1 oveq1i M 𝑠 0 = mulGrp fld 𝑠 0
31 2 30 eqtri U = mulGrp fld 𝑠 0
32 29 31 unitgrp fld Ring U Grp
33 25 32 ax-mp U Grp
34 24 33 pm3.2i ring Grp U Grp
35 zringbas = Base ring
36 difss 0
37 1 26 mgpbas = Base M
38 2 37 ressbas2 0 0 = Base U
39 36 38 ax-mp 0 = Base U
40 zringplusg + = + ring
41 29 fvexi 0 V
42 cnfldmul × = fld
43 1 42 mgpplusg × = + M
44 2 43 ressplusg 0 V × = + U
45 41 44 ax-mp × = + U
46 35 39 40 45 isghm x A x ring GrpHom U ring Grp U Grp x A x : 0 y z x A x y + z = x A x y x A x z
47 34 46 mpbiran x A x ring GrpHom U x A x : 0 y z x A x y + z = x A x y x A x z
48 5 23 47 sylanbrc A A 0 x A x ring GrpHom U