Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015) (Revised by AV, 10-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expghm.m | |
|
expghm.u | |
||
Assertion | expghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expghm.m | |
|
2 | expghm.u | |
|
3 | expclzlem | |
|
4 | 3 | 3expa | |
5 | 4 | fmpttd | |
6 | expaddz | |
|
7 | zaddcl | |
|
8 | 7 | adantl | |
9 | oveq2 | |
|
10 | eqid | |
|
11 | ovex | |
|
12 | 9 10 11 | fvmpt | |
13 | 8 12 | syl | |
14 | oveq2 | |
|
15 | ovex | |
|
16 | 14 10 15 | fvmpt | |
17 | oveq2 | |
|
18 | ovex | |
|
19 | 17 10 18 | fvmpt | |
20 | 16 19 | oveqan12d | |
21 | 20 | adantl | |
22 | 6 13 21 | 3eqtr4d | |
23 | 22 | ralrimivva | |
24 | zringgrp | |
|
25 | cnring | |
|
26 | cnfldbas | |
|
27 | cnfld0 | |
|
28 | cndrng | |
|
29 | 26 27 28 | drngui | |
30 | 1 | oveq1i | |
31 | 2 30 | eqtri | |
32 | 29 31 | unitgrp | |
33 | 25 32 | ax-mp | |
34 | 24 33 | pm3.2i | |
35 | zringbas | |
|
36 | difss | |
|
37 | 1 26 | mgpbas | |
38 | 2 37 | ressbas2 | |
39 | 36 38 | ax-mp | |
40 | zringplusg | |
|
41 | 29 | fvexi | |
42 | cnfldmul | |
|
43 | 1 42 | mgpplusg | |
44 | 2 43 | ressplusg | |
45 | 41 44 | ax-mp | |
46 | 35 39 40 45 | isghm | |
47 | 34 46 | mpbiran | |
48 | 5 23 47 | sylanbrc | |