Metamath Proof Explorer


Definition df-ress

Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range (like Ring ), defining a function using the base set and applying that (like TopGrp ), or explicitly truncating the slot before use (like MetSp ).

(Credit for this operator goes to Mario Carneiro.)

See ressbas for the altered base set, and resseqnbas ( subrg0 , ressplusg , subrg1 , ressmulr ) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Assertion df-ress 𝑠=wV,xVifBasewxwwsSetBasendxxBasew

Detailed syntax breakdown

Step Hyp Ref Expression
0 cress class𝑠
1 vw setvarw
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 3 cv setvarx
8 6 7 wss wffBasewx
9 csts classsSet
10 cnx classndx
11 10 4 cfv classBasendx
12 7 6 cin classxBasew
13 11 12 cop classBasendxxBasew
14 5 13 9 co classwsSetBasendxxBasew
15 8 5 14 cif classifBasewxwwsSetBasendxxBasew
16 1 3 2 2 15 cmpo classwV,xVifBasewxwwsSetBasendxxBasew
17 0 16 wceq wff𝑠=wV,xVifBasewxwwsSetBasendxxBasew