Metamath Proof Explorer


Theorem ressbas

Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014)

Ref Expression
Hypotheses ressbas.r R = W 𝑠 A
ressbas.b B = Base W
Assertion ressbas A V A B = Base R

Proof

Step Hyp Ref Expression
1 ressbas.r R = W 𝑠 A
2 ressbas.b B = Base W
3 simp1 B A W V A V B A
4 sseqin2 B A A B = B
5 3 4 sylib B A W V A V A B = B
6 1 2 ressid2 B A W V A V R = W
7 6 fveq2d B A W V A V Base R = Base W
8 2 5 7 3eqtr4a B A W V A V A B = Base R
9 8 3expib B A W V A V A B = Base R
10 simp2 ¬ B A W V A V W V
11 2 fvexi B V
12 11 inex2 A B V
13 baseid Base = Slot Base ndx
14 13 setsid W V A B V A B = Base W sSet Base ndx A B
15 10 12 14 sylancl ¬ B A W V A V A B = Base W sSet Base ndx A B
16 1 2 ressval2 ¬ B A W V A V R = W sSet Base ndx A B
17 16 fveq2d ¬ B A W V A V Base R = Base W sSet Base ndx A B
18 15 17 eqtr4d ¬ B A W V A V A B = Base R
19 18 3expib ¬ B A W V A V A B = Base R
20 9 19 pm2.61i W V A V A B = Base R
21 0fv Base ndx =
22 0ex V
23 22 13 strfvn Base = Base ndx
24 in0 A =
25 21 23 24 3eqtr4ri A = Base
26 fvprc ¬ W V Base W =
27 2 26 syl5eq ¬ W V B =
28 27 ineq2d ¬ W V A B = A
29 reldmress Rel dom 𝑠
30 29 ovprc1 ¬ W V W 𝑠 A =
31 1 30 syl5eq ¬ W V R =
32 31 fveq2d ¬ W V Base R = Base
33 25 28 32 3eqtr4a ¬ W V A B = Base R
34 33 adantr ¬ W V A V A B = Base R
35 20 34 pm2.61ian A V A B = Base R