Metamath Proof Explorer


Theorem oveqprc

Description: Lemma for showing the equality of values for functions like slot extractors E at a proper class. Extracted from several former proofs of lemmas like resvlem . (Contributed by AV, 31-Oct-2024)

Ref Expression
Hypotheses oveqprc.e E =
oveqprc.z Z = X O Y
oveqprc.r Rel dom O
Assertion oveqprc ¬ X V E X = E Z

Proof

Step Hyp Ref Expression
1 oveqprc.e E =
2 oveqprc.z Z = X O Y
3 oveqprc.r Rel dom O
4 1 eqcomi = E
5 fvprc ¬ X V E X =
6 3 ovprc1 ¬ X V X O Y =
7 2 6 eqtrid ¬ X V Z =
8 7 fveq2d ¬ X V E Z = E
9 4 5 8 3eqtr4a ¬ X V E X = E Z