Metamath Proof Explorer


Theorem resvlem

Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses resvlem.r R = W 𝑣 A
resvlem.e C = E W
resvlem.f E = Slot E ndx
resvlem.n E ndx Scalar ndx
Assertion resvlem A V C = E R

Proof

Step Hyp Ref Expression
1 resvlem.r R = W 𝑣 A
2 resvlem.e C = E W
3 resvlem.f E = Slot E ndx
4 resvlem.n E ndx Scalar ndx
5 eqid Scalar W = Scalar W
6 eqid Base Scalar W = Base Scalar W
7 1 5 6 resvid2 Base Scalar W A W V A V R = W
8 7 fveq2d Base Scalar W A W V A V E R = E W
9 8 3expib Base Scalar W A W V A V E R = E W
10 1 5 6 resvval2 ¬ Base Scalar W A W V A V R = W sSet Scalar ndx Scalar W 𝑠 A
11 10 fveq2d ¬ Base Scalar W A W V A V E R = E W sSet Scalar ndx Scalar W 𝑠 A
12 3 4 setsnid E W = E W sSet Scalar ndx Scalar W 𝑠 A
13 11 12 eqtr4di ¬ Base Scalar W A W V A V E R = E W
14 13 3expib ¬ Base Scalar W A W V A V E R = E W
15 9 14 pm2.61i W V A V E R = E W
16 3 str0 = E
17 16 eqcomi E =
18 reldmresv Rel dom 𝑣
19 17 1 18 oveqprc ¬ W V E W = E R
20 19 eqcomd ¬ W V E R = E W
21 20 adantr ¬ W V A V E R = E W
22 15 21 pm2.61ian A V E R = E W
23 2 22 eqtr4id A V C = E R