Metamath Proof Explorer


Theorem resvlem

Description: Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses resvlem.r
|- R = ( W |`v A )
resvlem.e
|- C = ( E ` W )
resvlem.f
|- E = Slot N
resvlem.n
|- N e. NN
resvlem.b
|- N =/= 5
Assertion resvlem
|- ( A e. V -> C = ( E ` R ) )

Proof

Step Hyp Ref Expression
1 resvlem.r
 |-  R = ( W |`v A )
2 resvlem.e
 |-  C = ( E ` W )
3 resvlem.f
 |-  E = Slot N
4 resvlem.n
 |-  N e. NN
5 resvlem.b
 |-  N =/= 5
6 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
7 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
8 1 6 7 resvid2
 |-  ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = W )
9 8 fveq2d
 |-  ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) )
10 9 3expib
 |-  ( ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) )
11 1 6 7 resvval2
 |-  ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) )
12 11 fveq2d
 |-  ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) )
13 3 4 ndxid
 |-  E = Slot ( E ` ndx )
14 3 4 ndxarg
 |-  ( E ` ndx ) = N
15 14 5 eqnetri
 |-  ( E ` ndx ) =/= 5
16 scandx
 |-  ( Scalar ` ndx ) = 5
17 15 16 neeqtrri
 |-  ( E ` ndx ) =/= ( Scalar ` ndx )
18 13 17 setsnid
 |-  ( E ` W ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) )
19 12 18 eqtr4di
 |-  ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) )
20 19 3expib
 |-  ( -. ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) )
21 10 20 pm2.61i
 |-  ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) )
22 reldmresv
 |-  Rel dom |`v
23 22 ovprc1
 |-  ( -. W e. _V -> ( W |`v A ) = (/) )
24 1 23 syl5eq
 |-  ( -. W e. _V -> R = (/) )
25 24 fveq2d
 |-  ( -. W e. _V -> ( E ` R ) = ( E ` (/) ) )
26 3 str0
 |-  (/) = ( E ` (/) )
27 25 26 eqtr4di
 |-  ( -. W e. _V -> ( E ` R ) = (/) )
28 fvprc
 |-  ( -. W e. _V -> ( E ` W ) = (/) )
29 27 28 eqtr4d
 |-  ( -. W e. _V -> ( E ` R ) = ( E ` W ) )
30 29 adantr
 |-  ( ( -. W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) )
31 21 30 pm2.61ian
 |-  ( A e. V -> ( E ` R ) = ( E ` W ) )
32 2 31 eqtr4id
 |-  ( A e. V -> C = ( E ` R ) )