Step |
Hyp |
Ref |
Expression |
1 |
|
setsid.e |
|- E = Slot ( E ` ndx ) |
2 |
|
setsnid.n |
|- ( E ` ndx ) =/= D |
3 |
|
id |
|- ( W e. _V -> W e. _V ) |
4 |
1 3
|
strfvnd |
|- ( W e. _V -> ( E ` W ) = ( W ` ( E ` ndx ) ) ) |
5 |
|
ovex |
|- ( W sSet <. D , C >. ) e. _V |
6 |
5 1
|
strfvn |
|- ( E ` ( W sSet <. D , C >. ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) |
7 |
|
setsres |
|- ( W e. _V -> ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) = ( W |` ( _V \ { D } ) ) ) |
8 |
7
|
fveq1d |
|- ( W e. _V -> ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) ) |
9 |
|
fvex |
|- ( E ` ndx ) e. _V |
10 |
|
eldifsn |
|- ( ( E ` ndx ) e. ( _V \ { D } ) <-> ( ( E ` ndx ) e. _V /\ ( E ` ndx ) =/= D ) ) |
11 |
9 2 10
|
mpbir2an |
|- ( E ` ndx ) e. ( _V \ { D } ) |
12 |
|
fvres |
|- ( ( E ` ndx ) e. ( _V \ { D } ) -> ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) ) |
13 |
11 12
|
ax-mp |
|- ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) |
14 |
|
fvres |
|- ( ( E ` ndx ) e. ( _V \ { D } ) -> ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) ) |
15 |
11 14
|
ax-mp |
|- ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) |
16 |
8 13 15
|
3eqtr3g |
|- ( W e. _V -> ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) ) |
17 |
6 16
|
eqtrid |
|- ( W e. _V -> ( E ` ( W sSet <. D , C >. ) ) = ( W ` ( E ` ndx ) ) ) |
18 |
4 17
|
eqtr4d |
|- ( W e. _V -> ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) ) |
19 |
1
|
str0 |
|- (/) = ( E ` (/) ) |
20 |
19
|
eqcomi |
|- ( E ` (/) ) = (/) |
21 |
|
eqid |
|- ( W sSet <. D , C >. ) = ( W sSet <. D , C >. ) |
22 |
|
reldmsets |
|- Rel dom sSet |
23 |
20 21 22
|
oveqprc |
|- ( -. W e. _V -> ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) ) |
24 |
18 23
|
pm2.61i |
|- ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) |