Metamath Proof Explorer


Theorem oveqprc

Description: Lemma for showing the equality of values for functions like slot extractors E at a proper class. Extracted from several former proofs of lemmas like resvlem . (Contributed by AV, 31-Oct-2024)

Ref Expression
Hypotheses oveqprc.e
|- ( E ` (/) ) = (/)
oveqprc.z
|- Z = ( X O Y )
oveqprc.r
|- Rel dom O
Assertion oveqprc
|- ( -. X e. _V -> ( E ` X ) = ( E ` Z ) )

Proof

Step Hyp Ref Expression
1 oveqprc.e
 |-  ( E ` (/) ) = (/)
2 oveqprc.z
 |-  Z = ( X O Y )
3 oveqprc.r
 |-  Rel dom O
4 1 eqcomi
 |-  (/) = ( E ` (/) )
5 fvprc
 |-  ( -. X e. _V -> ( E ` X ) = (/) )
6 3 ovprc1
 |-  ( -. X e. _V -> ( X O Y ) = (/) )
7 2 6 eqtrid
 |-  ( -. X e. _V -> Z = (/) )
8 7 fveq2d
 |-  ( -. X e. _V -> ( E ` Z ) = ( E ` (/) ) )
9 4 5 8 3eqtr4a
 |-  ( -. X e. _V -> ( E ` X ) = ( E ` Z ) )