Metamath Proof Explorer


Theorem setsnid

Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015) (Proof shortened by AV, 7-Nov-2024)

Ref Expression
Hypotheses setsid.e E=SlotEndx
setsnid.n EndxD
Assertion setsnid EW=EWsSetDC

Proof

Step Hyp Ref Expression
1 setsid.e E=SlotEndx
2 setsnid.n EndxD
3 id WVWV
4 1 3 strfvnd WVEW=WEndx
5 ovex WsSetDCV
6 5 1 strfvn EWsSetDC=WsSetDCEndx
7 setsres WVWsSetDCVD=WVD
8 7 fveq1d WVWsSetDCVDEndx=WVDEndx
9 fvex EndxV
10 eldifsn EndxVDEndxVEndxD
11 9 2 10 mpbir2an EndxVD
12 fvres EndxVDWsSetDCVDEndx=WsSetDCEndx
13 11 12 ax-mp WsSetDCVDEndx=WsSetDCEndx
14 fvres EndxVDWVDEndx=WEndx
15 11 14 ax-mp WVDEndx=WEndx
16 8 13 15 3eqtr3g WVWsSetDCEndx=WEndx
17 6 16 eqtrid WVEWsSetDC=WEndx
18 4 17 eqtr4d WVEW=EWsSetDC
19 1 str0 =E
20 19 eqcomi E=
21 eqid WsSetDC=WsSetDC
22 reldmsets ReldomsSet
23 20 21 22 oveqprc ¬WVEW=EWsSetDC
24 18 23 pm2.61i EW=EWsSetDC