Metamath Proof Explorer


Theorem setsnidOLD

Description: Obsolete proof of setsnid as of 7-Nov-2024. Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses setsid.e E=SlotEndx
setsnid.n EndxD
Assertion setsnidOLD EW=EWsSetDC

Proof

Step Hyp Ref Expression
1 setsid.e E=SlotEndx
2 setsnid.n EndxD
3 id WVWV
4 1 3 strfvnd WVEW=WEndx
5 ovex WsSetDCV
6 5 1 strfvn EWsSetDC=WsSetDCEndx
7 setsres WVWsSetDCVD=WVD
8 7 fveq1d WVWsSetDCVDEndx=WVDEndx
9 fvex EndxV
10 eldifsn EndxVDEndxVEndxD
11 9 2 10 mpbir2an EndxVD
12 fvres EndxVDWsSetDCVDEndx=WsSetDCEndx
13 11 12 ax-mp WsSetDCVDEndx=WsSetDCEndx
14 fvres EndxVDWVDEndx=WEndx
15 11 14 ax-mp WVDEndx=WEndx
16 8 13 15 3eqtr3g WVWsSetDCEndx=WEndx
17 6 16 eqtrid WVEWsSetDC=WEndx
18 4 17 eqtr4d WVEW=EWsSetDC
19 1 str0 =E
20 fvprc ¬WVEW=
21 reldmsets ReldomsSet
22 21 ovprc1 ¬WVWsSetDC=
23 22 fveq2d ¬WVEWsSetDC=E
24 19 20 23 3eqtr4a ¬WVEW=EWsSetDC
25 18 24 pm2.61i EW=EWsSetDC