Step |
Hyp |
Ref |
Expression |
1 |
|
resvlemOLD.r |
|- R = ( W |`v A ) |
2 |
|
resvlemOLD.e |
|- C = ( E ` W ) |
3 |
|
resvlemOLD.f |
|- E = Slot N |
4 |
|
resvlemOLD.n |
|- N e. NN |
5 |
|
resvlemOLD.b |
|- N =/= 5 |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
8 |
1 6 7
|
resvid2 |
|- ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
9 |
8
|
fveq2d |
|- ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
10 |
9
|
3expib |
|- ( ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
11 |
1 6 7
|
resvval2 |
|- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) |
12 |
11
|
fveq2d |
|- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) ) |
13 |
3 4
|
ndxid |
|- E = Slot ( E ` ndx ) |
14 |
3 4
|
ndxarg |
|- ( E ` ndx ) = N |
15 |
14 5
|
eqnetri |
|- ( E ` ndx ) =/= 5 |
16 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
17 |
15 16
|
neeqtrri |
|- ( E ` ndx ) =/= ( Scalar ` ndx ) |
18 |
13 17
|
setsnid |
|- ( E ` W ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) |
19 |
12 18
|
eqtr4di |
|- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
20 |
19
|
3expib |
|- ( -. ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
21 |
10 20
|
pm2.61i |
|- ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
22 |
|
reldmresv |
|- Rel dom |`v |
23 |
22
|
ovprc1 |
|- ( -. W e. _V -> ( W |`v A ) = (/) ) |
24 |
1 23
|
syl5eq |
|- ( -. W e. _V -> R = (/) ) |
25 |
24
|
fveq2d |
|- ( -. W e. _V -> ( E ` R ) = ( E ` (/) ) ) |
26 |
3
|
str0 |
|- (/) = ( E ` (/) ) |
27 |
25 26
|
eqtr4di |
|- ( -. W e. _V -> ( E ` R ) = (/) ) |
28 |
|
fvprc |
|- ( -. W e. _V -> ( E ` W ) = (/) ) |
29 |
27 28
|
eqtr4d |
|- ( -. W e. _V -> ( E ` R ) = ( E ` W ) ) |
30 |
29
|
adantr |
|- ( ( -. W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
31 |
21 30
|
pm2.61ian |
|- ( A e. V -> ( E ` R ) = ( E ` W ) ) |
32 |
2 31
|
eqtr4id |
|- ( A e. V -> C = ( E ` R ) ) |