Step |
Hyp |
Ref |
Expression |
1 |
|
resvlemOLD.r |
⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) |
2 |
|
resvlemOLD.e |
⊢ 𝐶 = ( 𝐸 ‘ 𝑊 ) |
3 |
|
resvlemOLD.f |
⊢ 𝐸 = Slot 𝑁 |
4 |
|
resvlemOLD.n |
⊢ 𝑁 ∈ ℕ |
5 |
|
resvlemOLD.b |
⊢ 𝑁 ≠ 5 |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
1 6 7
|
resvid2 |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
9 |
8
|
fveq2d |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
10 |
9
|
3expib |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
11 |
1 6 7
|
resvval2 |
⊢ ( ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑊 ) ↾s 𝐴 ) 〉 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑊 ) ↾s 𝐴 ) 〉 ) ) ) |
13 |
3 4
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
14 |
3 4
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
15 |
14 5
|
eqnetri |
⊢ ( 𝐸 ‘ ndx ) ≠ 5 |
16 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
17 |
15 16
|
neeqtrri |
⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
18 |
13 17
|
setsnid |
⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑊 ) ↾s 𝐴 ) 〉 ) ) |
19 |
12 18
|
eqtr4di |
⊢ ( ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
20 |
19
|
3expib |
⊢ ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
21 |
10 20
|
pm2.61i |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
22 |
|
reldmresv |
⊢ Rel dom ↾v |
23 |
22
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾v 𝐴 ) = ∅ ) |
24 |
1 23
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝑅 = ∅ ) |
25 |
24
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ∅ ) ) |
26 |
3
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
27 |
25 26
|
eqtr4di |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ∅ ) |
28 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ∅ ) |
29 |
27 28
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
30 |
29
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
31 |
21 30
|
pm2.61ian |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
32 |
2 31
|
eqtr4id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑅 ) ) |