Metamath Proof Explorer


Theorem resvlemOLD

Description: Obsolete version of resvlem as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses resvlemOLD.r R = W 𝑣 A
resvlemOLD.e C = E W
resvlemOLD.f E = Slot N
resvlemOLD.n N
resvlemOLD.b N 5
Assertion resvlemOLD A V C = E R

Proof

Step Hyp Ref Expression
1 resvlemOLD.r R = W 𝑣 A
2 resvlemOLD.e C = E W
3 resvlemOLD.f E = Slot N
4 resvlemOLD.n N
5 resvlemOLD.b N 5
6 eqid Scalar W = Scalar W
7 eqid Base Scalar W = Base Scalar W
8 1 6 7 resvid2 Base Scalar W A W V A V R = W
9 8 fveq2d Base Scalar W A W V A V E R = E W
10 9 3expib Base Scalar W A W V A V E R = E W
11 1 6 7 resvval2 ¬ Base Scalar W A W V A V R = W sSet Scalar ndx Scalar W 𝑠 A
12 11 fveq2d ¬ Base Scalar W A W V A V E R = E W sSet Scalar ndx Scalar W 𝑠 A
13 3 4 ndxid E = Slot E ndx
14 3 4 ndxarg E ndx = N
15 14 5 eqnetri E ndx 5
16 scandx Scalar ndx = 5
17 15 16 neeqtrri E ndx Scalar ndx
18 13 17 setsnid E W = E W sSet Scalar ndx Scalar W 𝑠 A
19 12 18 eqtr4di ¬ Base Scalar W A W V A V E R = E W
20 19 3expib ¬ Base Scalar W A W V A V E R = E W
21 10 20 pm2.61i W V A V E R = E W
22 reldmresv Rel dom 𝑣
23 22 ovprc1 ¬ W V W 𝑣 A =
24 1 23 syl5eq ¬ W V R =
25 24 fveq2d ¬ W V E R = E
26 3 str0 = E
27 25 26 eqtr4di ¬ W V E R =
28 fvprc ¬ W V E W =
29 27 28 eqtr4d ¬ W V E R = E W
30 29 adantr ¬ W V A V E R = E W
31 21 30 pm2.61ian A V E R = E W
32 2 31 eqtr4id A V C = E R