Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Scalar restriction operation
resvval2
Next ⟩
resvsca
Metamath Proof Explorer
Ascii
Unicode
Theorem
resvval2
Description:
Value of nontrivial structure restriction.
(Contributed by
Thierry Arnoux
, 6-Sep-2018)
Ref
Expression
Hypotheses
resvsca.r
⊢
R
=
W
↾
𝑣
A
resvsca.f
⊢
F
=
Scalar
⁡
W
resvsca.b
⊢
B
=
Base
F
Assertion
resvval2
⊢
¬
B
⊆
A
∧
W
∈
X
∧
A
∈
Y
→
R
=
W
sSet
Scalar
⁡
ndx
F
↾
𝑠
A
Proof
Step
Hyp
Ref
Expression
1
resvsca.r
⊢
R
=
W
↾
𝑣
A
2
resvsca.f
⊢
F
=
Scalar
⁡
W
3
resvsca.b
⊢
B
=
Base
F
4
1
2
3
resvval
⊢
W
∈
X
∧
A
∈
Y
→
R
=
if
B
⊆
A
W
W
sSet
Scalar
⁡
ndx
F
↾
𝑠
A
5
iffalse
⊢
¬
B
⊆
A
→
if
B
⊆
A
W
W
sSet
Scalar
⁡
ndx
F
↾
𝑠
A
=
W
sSet
Scalar
⁡
ndx
F
↾
𝑠
A
6
4
5
sylan9eqr
⊢
¬
B
⊆
A
∧
W
∈
X
∧
A
∈
Y
→
R
=
W
sSet
Scalar
⁡
ndx
F
↾
𝑠
A
7
6
3impb
⊢
¬
B
⊆
A
∧
W
∈
X
∧
A
∈
Y
→
R
=
W
sSet
Scalar
⁡
ndx
F
↾
𝑠
A