Metamath Proof Explorer


Theorem resvbas

Description: Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses resvbas.1 H=G𝑣A
resvbas.2 B=BaseG
Assertion resvbas AVB=BaseH

Proof

Step Hyp Ref Expression
1 resvbas.1 H=G𝑣A
2 resvbas.2 B=BaseG
3 baseid Base=SlotBasendx
4 scandxnbasendx ScalarndxBasendx
5 4 necomi BasendxScalarndx
6 1 2 3 5 resvlem AVB=BaseH