Metamath Proof Explorer


Theorem ovprc1

Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004)

Ref Expression
Hypothesis ovprc1.1 Rel dom 𝐹
Assertion ovprc1 ( ¬ 𝐴 ∈ V → ( 𝐴 𝐹 𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ovprc1.1 Rel dom 𝐹
2 simpl ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝐴 ∈ V )
3 1 ovprc ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = ∅ )
4 2 3 nsyl5 ( ¬ 𝐴 ∈ V → ( 𝐴 𝐹 𝐵 ) = ∅ )