Metamath Proof Explorer


Theorem ovprc

Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis ovprc1.1 Rel dom 𝐹
Assertion ovprc ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ovprc1.1 Rel dom 𝐹
2 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
3 df-br ( 𝐴 dom 𝐹 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 )
4 1 brrelex12i ( 𝐴 dom 𝐹 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
5 3 4 sylbir ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
6 ndmfv ( ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 → ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ∅ )
7 5 6 nsyl5 ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ∅ )
8 2 7 syl5eq ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = ∅ )