Metamath Proof Explorer


Theorem ovprc

Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis ovprc1.1
|- Rel dom F
Assertion ovprc
|- ( -. ( A e. _V /\ B e. _V ) -> ( A F B ) = (/) )

Proof

Step Hyp Ref Expression
1 ovprc1.1
 |-  Rel dom F
2 df-ov
 |-  ( A F B ) = ( F ` <. A , B >. )
3 df-br
 |-  ( A dom F B <-> <. A , B >. e. dom F )
4 1 brrelex12i
 |-  ( A dom F B -> ( A e. _V /\ B e. _V ) )
5 3 4 sylbir
 |-  ( <. A , B >. e. dom F -> ( A e. _V /\ B e. _V ) )
6 ndmfv
 |-  ( -. <. A , B >. e. dom F -> ( F ` <. A , B >. ) = (/) )
7 5 6 nsyl5
 |-  ( -. ( A e. _V /\ B e. _V ) -> ( F ` <. A , B >. ) = (/) )
8 2 7 eqtrid
 |-  ( -. ( A e. _V /\ B e. _V ) -> ( A F B ) = (/) )