Metamath Proof Explorer


Theorem reldmresv

Description: The scalar restriction is a proper operator, so it can be used with ovprc1 . (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Assertion reldmresv Rel dom ↾v

Proof

Step Hyp Ref Expression
1 df-resv v = ( 𝑦 ∈ V , 𝑥 ∈ V ↦ if ( ( Base ‘ ( Scalar ‘ 𝑦 ) ) ⊆ 𝑥 , 𝑦 , ( 𝑦 sSet ⟨ ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑦 ) ↾s 𝑥 ) ⟩ ) ) )
2 1 reldmmpo Rel dom ↾v