| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ressbas.r | 
							⊢ 𝑅  =  ( 𝑊  ↾s  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							ressbas.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  𝐵  ⊆  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							sseqin2 | 
							⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐴  ∩  𝐵 )  =  𝐵 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylib | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  𝐵 )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							ressid2 | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  𝑅  =  𝑊 )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑊 ) )  | 
						
						
							| 8 | 
							
								2 5 7
							 | 
							3eqtr4a | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3expib | 
							⊢ ( 𝐵  ⊆  𝐴  →  ( ( 𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ¬  𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  𝑊  ∈  V )  | 
						
						
							| 11 | 
							
								2
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 12 | 
							
								11
							 | 
							inex2 | 
							⊢ ( 𝐴  ∩  𝐵 )  ∈  V  | 
						
						
							| 13 | 
							
								
							 | 
							baseid | 
							⊢ Base  =  Slot  ( Base ‘ ndx )  | 
						
						
							| 14 | 
							
								13
							 | 
							setsid | 
							⊢ ( ( 𝑊  ∈  V  ∧  ( 𝐴  ∩  𝐵 )  ∈  V )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  𝐵 ) 〉 ) ) )  | 
						
						
							| 15 | 
							
								10 12 14
							 | 
							sylancl | 
							⊢ ( ( ¬  𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  𝐵 ) 〉 ) ) )  | 
						
						
							| 16 | 
							
								1 2
							 | 
							ressval2 | 
							⊢ ( ( ¬  𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  𝑅  =  ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  𝐵 ) 〉 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							fveq2d | 
							⊢ ( ( ¬  𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  𝐵 ) 〉 ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							eqtr4d | 
							⊢ ( ( ¬  𝐵  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3expib | 
							⊢ ( ¬  𝐵  ⊆  𝐴  →  ( ( 𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) ) )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							pm2.61i | 
							⊢ ( ( 𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							in0 | 
							⊢ ( 𝐴  ∩  ∅ )  =  ∅  | 
						
						
							| 22 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑊  ∈  V  →  ( Base ‘ 𝑊 )  =  ∅ )  | 
						
						
							| 23 | 
							
								2 22
							 | 
							eqtrid | 
							⊢ ( ¬  𝑊  ∈  V  →  𝐵  =  ∅ )  | 
						
						
							| 24 | 
							
								23
							 | 
							ineq2d | 
							⊢ ( ¬  𝑊  ∈  V  →  ( 𝐴  ∩  𝐵 )  =  ( 𝐴  ∩  ∅ ) )  | 
						
						
							| 25 | 
							
								21 24 22
							 | 
							3eqtr4a | 
							⊢ ( ¬  𝑊  ∈  V  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑊 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							base0 | 
							⊢ ∅  =  ( Base ‘ ∅ )  | 
						
						
							| 27 | 
							
								26
							 | 
							eqcomi | 
							⊢ ( Base ‘ ∅ )  =  ∅  | 
						
						
							| 28 | 
							
								
							 | 
							reldmress | 
							⊢ Rel  dom   ↾s   | 
						
						
							| 29 | 
							
								27 1 28
							 | 
							oveqprc | 
							⊢ ( ¬  𝑊  ∈  V  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							eqtrd | 
							⊢ ( ¬  𝑊  ∈  V  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( ¬  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 32 | 
							
								20 31
							 | 
							pm2.61ian | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∩  𝐵 )  =  ( Base ‘ 𝑅 ) )  |