Metamath Proof Explorer


Theorem ressbas

Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014) (Proof shortened by AV, 7-Nov-2024)

Ref Expression
Hypotheses ressbas.r 𝑅 = ( 𝑊s 𝐴 )
ressbas.b 𝐵 = ( Base ‘ 𝑊 )
Assertion ressbas ( 𝐴𝑉 → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ressbas.r 𝑅 = ( 𝑊s 𝐴 )
2 ressbas.b 𝐵 = ( Base ‘ 𝑊 )
3 simp1 ( ( 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝐵𝐴 )
4 sseqin2 ( 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 𝐵 )
5 3 4 sylib ( ( 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = 𝐵 )
6 1 2 ressid2 ( ( 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝑅 = 𝑊 )
7 6 fveq2d ( ( 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑊 ) )
8 2 5 7 3eqtr4a ( ( 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )
9 8 3expib ( 𝐵𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) ) )
10 simp2 ( ( ¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝑊 ∈ V )
11 2 fvexi 𝐵 ∈ V
12 11 inex2 ( 𝐴𝐵 ) ∈ V
13 baseid Base = Slot ( Base ‘ ndx )
14 13 setsid ( ( 𝑊 ∈ V ∧ ( 𝐴𝐵 ) ∈ V ) → ( 𝐴𝐵 ) = ( Base ‘ ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴𝐵 ) ⟩ ) ) )
15 10 12 14 sylancl ( ( ¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = ( Base ‘ ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴𝐵 ) ⟩ ) ) )
16 1 2 ressval2 ( ( ¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝑅 = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴𝐵 ) ⟩ ) )
17 16 fveq2d ( ( ¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴𝐵 ) ⟩ ) ) )
18 15 17 eqtr4d ( ( ¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )
19 18 3expib ( ¬ 𝐵𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) ) )
20 9 19 pm2.61i ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )
21 in0 ( 𝐴 ∩ ∅ ) = ∅
22 fvprc ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ )
23 2 22 eqtrid ( ¬ 𝑊 ∈ V → 𝐵 = ∅ )
24 23 ineq2d ( ¬ 𝑊 ∈ V → ( 𝐴𝐵 ) = ( 𝐴 ∩ ∅ ) )
25 21 24 22 3eqtr4a ( ¬ 𝑊 ∈ V → ( 𝐴𝐵 ) = ( Base ‘ 𝑊 ) )
26 base0 ∅ = ( Base ‘ ∅ )
27 26 eqcomi ( Base ‘ ∅ ) = ∅
28 reldmress Rel dom ↾s
29 27 1 28 oveqprc ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑅 ) )
30 25 29 eqtrd ( ¬ 𝑊 ∈ V → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )
31 30 adantr ( ( ¬ 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )
32 20 31 pm2.61ian ( 𝐴𝑉 → ( 𝐴𝐵 ) = ( Base ‘ 𝑅 ) )