Step |
Hyp |
Ref |
Expression |
1 |
|
ressbas.r |
|- R = ( W |`s A ) |
2 |
|
ressbas.b |
|- B = ( Base ` W ) |
3 |
|
simp1 |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> B C_ A ) |
4 |
|
sseqin2 |
|- ( B C_ A <-> ( A i^i B ) = B ) |
5 |
3 4
|
sylib |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = B ) |
6 |
1 2
|
ressid2 |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
7 |
6
|
fveq2d |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( Base ` R ) = ( Base ` W ) ) |
8 |
2 5 7
|
3eqtr4a |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
9 |
8
|
3expib |
|- ( B C_ A -> ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) ) |
10 |
|
simp2 |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> W e. _V ) |
11 |
2
|
fvexi |
|- B e. _V |
12 |
11
|
inex2 |
|- ( A i^i B ) e. _V |
13 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
14 |
13
|
setsid |
|- ( ( W e. _V /\ ( A i^i B ) e. _V ) -> ( A i^i B ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
15 |
10 12 14
|
sylancl |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
16 |
1 2
|
ressval2 |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
17 |
16
|
fveq2d |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( Base ` R ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
18 |
15 17
|
eqtr4d |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
19 |
18
|
3expib |
|- ( -. B C_ A -> ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) ) |
20 |
9 19
|
pm2.61i |
|- ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
21 |
|
0fv |
|- ( (/) ` ( Base ` ndx ) ) = (/) |
22 |
|
0ex |
|- (/) e. _V |
23 |
22 13
|
strfvn |
|- ( Base ` (/) ) = ( (/) ` ( Base ` ndx ) ) |
24 |
|
in0 |
|- ( A i^i (/) ) = (/) |
25 |
21 23 24
|
3eqtr4ri |
|- ( A i^i (/) ) = ( Base ` (/) ) |
26 |
|
fvprc |
|- ( -. W e. _V -> ( Base ` W ) = (/) ) |
27 |
2 26
|
eqtrid |
|- ( -. W e. _V -> B = (/) ) |
28 |
27
|
ineq2d |
|- ( -. W e. _V -> ( A i^i B ) = ( A i^i (/) ) ) |
29 |
|
reldmress |
|- Rel dom |`s |
30 |
29
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s A ) = (/) ) |
31 |
1 30
|
eqtrid |
|- ( -. W e. _V -> R = (/) ) |
32 |
31
|
fveq2d |
|- ( -. W e. _V -> ( Base ` R ) = ( Base ` (/) ) ) |
33 |
25 28 32
|
3eqtr4a |
|- ( -. W e. _V -> ( A i^i B ) = ( Base ` R ) ) |
34 |
33
|
adantr |
|- ( ( -. W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) |
35 |
20 34
|
pm2.61ian |
|- ( A e. V -> ( A i^i B ) = ( Base ` R ) ) |