Metamath Proof Explorer


Theorem ressval2

Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypotheses ressbas.r
|- R = ( W |`s A )
ressbas.b
|- B = ( Base ` W )
Assertion ressval2
|- ( ( -. B C_ A /\ W e. X /\ A e. Y ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) )

Proof

Step Hyp Ref Expression
1 ressbas.r
 |-  R = ( W |`s A )
2 ressbas.b
 |-  B = ( Base ` W )
3 1 2 ressval
 |-  ( ( W e. X /\ A e. Y ) -> R = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) )
4 iffalse
 |-  ( -. B C_ A -> if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) )
5 3 4 sylan9eqr
 |-  ( ( -. B C_ A /\ ( W e. X /\ A e. Y ) ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) )
6 5 3impb
 |-  ( ( -. B C_ A /\ W e. X /\ A e. Y ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) )